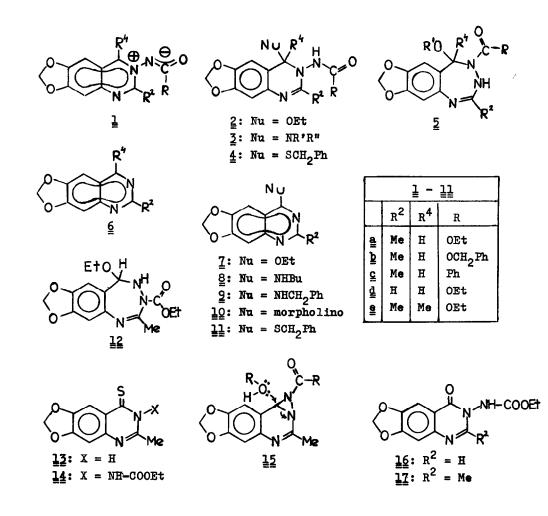
ELECTRON DEFICIENT HETEROAROMATIC AMMONIOAMIDATES, X¹


PHOTOLYSES OF SOME <u>N-(3-QUINAZOLINIO)-AMIDATES²</u>

J. Fetter, * K. Lempert, * J. Møller** and Miss G. Szalai*

⁺Department of Organic Chemistry, Technical University, H-1521 Budapest, Hungary, and ⁺⁺Department of Chemistry, Odense University, DK-5000

Odense, Denmark

(Received in UK 2 June 1975; accepted for publication 26 June 1975) The <u>N-(3-quinazolinio)-amidates la-e</u> do exist in alcoholic solns as equilibrium mixtures with their alcohol adducts, e.g. 2a-e.³ When an Ar purged ethanolic soln of la was irradiated through Pyrex with a high pressure Hg lamp, four products, ⁴ 5 (R'=Et, 26 %, mp. 174-5), 6 (30 %, mp. 180), 7 (5 %, mp. 126-8°) and ethyl carbamate, were obtained. 6a and 7a were identical with authentic samples. The structure assignment of 5a (R'=Et) is based on the following observations. UV [209 (4.56); 220 (4.4), sh; 300 (4.00) in EtOH], IR [KBr; νNH 3300, b, νC=0 1690] and mass spectra [m/e 321: (M) 44 %, m/e 276: (M Ξ OEt)⁵ 100 %, <u>m/e</u> 248: (276 [±] C₂H₄) 15 %, <u>m/e</u> 230: (276 [±] EtOH) 20 %, <u>m/e</u> 204: (248 [±] CO₂) 9 %, <u>m/e</u> 189: (C₁₀H₉N₂O₂) 28 %, <u>m/e</u> 188: (230 [±] NCO) 16 %] are consistent with the isomeric structures 5a (R'=Et) and 12; the latter, however, is ruled out by the PHR spectrum [OEt:61.28, t + 3.6, q, J = 7 Hz; COOEt: 1.35, t + 4.3, q, J = 7 Hz; 2-Me: 2.15, s; OCH₂0: 5.95, s; 5-H + ArH's: 6.35 + 6.4 + 6.7, all s; NH: 7.1, bs in CDCl₃; OEt: 1.08, t + \sim 3.45, m, J = 7 Hz; COOEt: 1.14, t + 4.10, q, J = 7 Hz; 2-Me: 1.96, s; OCH₂0: 6.01, s; 5-H + ArH's: 6.35 + 6.6 + 6.9, all s; NH: 8.8 bs in DMSO-d₆ because there is no H-N-C-H coupling as required by structure 12, while such a coupling $(J_{H-C(2)-N-H} = 5 \text{ Hz})$ is observed in the DHSO-d₆ PMR spectrum of the analogous 5d (R'=Et). When irradiation of la was performed in benzyl alcohol, 5a (R'= PhCH₂, 4 %, m.p. 90-3°) was formed along with $\underline{6a}$ and ethyl urethane.

Irradiations of $\underline{l}\underline{b}\underline{-d}$ in EtOH furnished the analogous benzotriazepines $\underline{5}\underline{b}$ (R'=Et; 23 %, mp. 176°), $\underline{5}\underline{c}$ (R'=Et; 26 %, mp. 197°) and $\underline{5}\underline{d}$ (R'=Et; 11 %, mp. 122-4°), respectively, whose UV, IR, mass and PMR spectra are in agreement with their assumed structures. Irradiation of $\underline{l}\underline{e}$, for which the equilibrium with its EtOH adduct is shifted towards the amidate,³ furnished $\underline{6}\underline{e}$ (86 %, m.p. 181-3°).

When benzylamine or d-toluenethicl were added to CDCl₃ solutions of $\underline{l}\underline{c}$, the signals corresponding to $\underline{l}\underline{c}^3$ were gradually replaced by those of the

adducts $\underline{3c}$ (NRR' = NHCH₂Ph; 2-Me: δ 2.25; 4-H: 4.8; OCH₂O: 5.75; ArH's: 6.8 + 7.1)⁶ and $\underline{4c}$ (OCH₂O: δ 5.90), respectively.

Irradiation of \underline{la} in BuNH_2 , $\operatorname{PhCH}_2\operatorname{NH}_2$ and morpholine furnished $\underline{8a}$ (70 %, mp. 193°), $\underline{2a}$ (42 %, mp. 199-200°) and \underline{loa} (70 %, m.p. 187°), respectively, whose structures were derived from their IR and mass spectra, and corroborated by comparison with authentic samples. Irradiation of \underline{le} in BuNH_2 furnished $\underline{6e}$ (80 %). Ethyl urethane was obtained as the by-product in all cases.

When $\underline{1}\underline{a}$ was irradiated in a mixture of CHCl₃ and $\cancel{-}$ toluenethiol, $\underline{1}\underline{1}\underline{a}$ (4 %, mp. 170-1°), $\underline{1}\underline{3}$ (4 %, mp. 290-2°) and $\underline{1}\underline{4}$ (25 %, mp. 170-1°) were obtained as the major products. $\underline{1}\underline{1}\underline{a}$ and $\underline{1}\underline{3}$ proved identical with authentic samples, while structure $\underline{1}\underline{4}$ was derived from the mass spectrum [$\underline{m}/\underline{e}$ 307: (M) 100 %, $\underline{m}/\underline{e}$ 274: (M $\underline{\pm}$ SH) 12 %, $\underline{m}/\underline{e}$ 262: (M $\underline{\pm}$ EtO) 11 %, $\underline{m}/\underline{e}$ 235: (M - CO₂ - C₂H₄) 16 %, $\underline{m}/\underline{e}$ 220 (262 $\underline{\pm}$ NCO) 20 %, $\underline{m}/\underline{e}$ 206 (235 $\underline{\pm}$ 29) 9 %, $\underline{m}/\underline{e}$ 205: 9 %, $\underline{m}/\underline{e}$ 187: (220 $\underline{\pm}$ SH) 17 %], IR [γ NH 3240, γ C=0 1740 in KBr] and the PMR spectrum [NH: δ 8.1, bs; 5-H: 7.98, s; 8-H: 7.05, s; OCH₂O: 6.18, s; 2-Me: 2.68, s; COODt: 1.35, t + γ 4.3, m, J = 7.3 Hz, in CDCl₃] of the product.

The Type $\underline{7}-\underline{1}\underline{1}$ compounds are thought to arise from a Norrish Type II cleavage of the Type $\underline{2}-\underline{4}$ adducts,⁷ respectively, while the Type $\underline{6}$ compounds are clearly the acylnitrene elimination products of the amidates $\underline{1}$ themselves, and probably formed through the T_1 states (<u>c.f.</u> Ref. 8). The ring enlargement products $\underline{5}$, on the other hand, are probably formed <u>via</u> the S_1 states and the diaziridine intermediates $\underline{15}$. The formation of $\underline{6e}$ as the only heterocyclic product on photolysis of $\underline{1e}$ in EtOH and BuNH_2 reflects the reduced propensity of C-4 of the latter towards being attacked by nucleophiles. $\underline{11a}$, the primary photolysis product of $\underline{5a}$ formed in the presence of $\underline{n'}$ -toluenethiol is, as shown in a separate experiment, photounstable. Photolysis of its S-CH₂ bond leads to $\underline{13}$. Formation of $\underline{14}$, on the other hand, may be rationalized by assuming photolysis of the S-CH₂ bond of $\underline{4a}$ and H abstraction by the resulting heterocyclic radical.

An interesting by-product of the photolysis of $\underline{l}\underline{d}$ in EtOH is $\underline{l}\underline{6}$ (10 %, m.p. 226°), whose 2-Me derivative $\underline{l}\underline{7}$ (13 %, mp. 160-2°) is one of the products

formed on prolonged refluxing of \underline{la} with BuNH_2 . The structure of $\underline{l7}$ was proven by comparison with an authentic sample, while that of $\underline{l6}$ follows from the similarity of its mass, IR, UV and PMR spectra to those of $\underline{l7}$.

References and Notes

- 1. Part IX: B. Ágai and K. Lempert, submitted for publication
- 2. Part II of N-(3-Quinazolinio) amidates. For Part I, see Ref. 3.
- J. Fetter, K. Lempert and J. Møller, <u>Tetrahedron 31</u> (1975), accepted for publication
- 4. All new compounds gave satisfactory microanalyses
- 5. An asterisk indicates that the decomposition is accompanied by the appropriate metastable peak
- 6. For the formation of an analogous NH_3 adduct, see Ref. 3.
- The dihydroderivative <u>2a</u> (with H instead of Nu) similarly yields <u>6a</u>, when irradiated in EtOH.
- J. Streith, T.P. Luttringer and M. Nastasi, <u>J. Org. Chem</u>. <u>36</u>, 2962 (1971)